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Abstract

Retinal detachment (RD) and retinoschisis (RS) are the main complications leading to vision loss in
high myopia. Accurate segmentation of RD and RS, including its subcategories (outer, middle, and
inner retinoschisis) in optical coherence tomography images is of great clinical significance in the
diagnosis and management of high myopia. For this multi-class segmentation task, we propose a novel
framework named complementary multi-class segmentation networks. Based on domain knowledge,
athree-class segmentation path (TSP) and a five-class segmentation path (FSP) are designed, and their
outputs are integrated through additional decision fusion layers to achieve improved segmentation in
acomplementary manner. In TSP, a cross-fusion global feature module is adopted to achieve global
receptive field. In FSP, a novel three-dimensional contextual information perception module is
proposed to capture long-range contexts, and a classification branch is designed to provide useful
features for segmentation. A new category loss is also proposed in FSP to help better identify the lesion
categories. Experiment results show that the proposed method achieves superior performance for
joint segmentation of RD and the three subcategories of RS, with an average Dice coefficient

0f 84.83%.

1. Introduction

High myopia can cause many pathological changes in the retina, among which retinal detachment (RD) and
retinoschisis (RS) are the most common complications, which can seriously impair the visual function
(Lai2007). With optical coherence tomography (OCT), RD and RS can be observed clearly and non-invasively
(Fujimoto et al 2010). Retinoschisis is characterized by the splitting of retinal neuroepithelium (RNE) layer.
According to the retina layers where it occurs, retinoschisis can be divided into outer retinoschisis (ORS), middle
retinoschisis (MRS), and inner retinoschisis (IRS). Retinal detachment refers to the separation of the RNE and
retinal pigment epithelium (RPE). Figure 1 shows an example OCT B-scan with ORS, MRS, IRS and RD. In
pathological myopia, RS generally occurs in the early stage. With the development of the disease, more number
of RS will occur and the area will become larger. In a more advanced stage, RD will develop, and surgery is
required (Takano 1999, Frisina et al 2020, Benhamou et al 2022). Quantization of RD, ORS, MRS, and IRS is
important for the diagnosis, staging, management, and postoperative assessment of pathological myopia
(Frisina et al 2020).

With the rise of the convolutional neural network (CNN), it has been used in more and more lesion
segmentation tasks in OCT images, such as for segmentation of retinal edema (Feng et al 2020), retinal layer and
fluid (Roy et al 2017), subretinal fluid and pigment epithelial detachment (Gao etal 2019, Hu et al 2019), macular
hole and cystoid macular edema (Ye et al 2020). Its excellent capability of feature extraction results in superior
segmentation performance. However, there are few works studying the automatic segmentation of RD, ORS,
MRS, and IRS. The segmentation of these lesions faces some challenges: (1) uneven distribution of categories,
because not all categories appear in a particular B-scan, (2) various sizes of target regions, some are small and
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(b) (c)

Figure 1. (a) Retinal detachment and retinoschisis in OCT images. (b) (c) the corresponding labels (RD is represented in green, RS is
represented in yellow, ORS is represented in red, MRS is represented in blue, and IRS is represented in purple).

some have a large horizontal span, and (3) closeness in location and intensity. Especially, ORS, MRS, and IRS are
more similar in shape and texture, and are thus more prone to segmentation errors.

In Yangetal (2021), we reported some preliminary work on segmentation of RD and RS, based on a
U-shaped network embedded with a cross-fusion global feature module (CFGF). In this work, we substantially
expand the previous work, and design the complementary multi-class segmentation networks (CMC-Net) to
accomplish the task of RD, ORS, MRS, and IRS segmentation, and the results were obtained from a larger
dataset.

It has been shown that ensemble of multiple segmentation models may improve the results (Causey
etal 2022, Alsaih et al 2020, Golla et al 2021). Based on the prior knowledge that the difference between RD and
RSislarger than thatamong subcategories of RS, we design a double-path framework. One path is a three-class
segmentation network focusing on differentiation of RD and RS, which is a modified version of the network
reported in (Yang et al 2021), while the other is a five-class segmentation network, emphasizing more on the
subcategories of RS. Then, multiple convolutional layers are trained to fuse the results of the two paths on the
decision level.

Capturing contextual information is essential for image segmentation tasks. In addition to the local context,
long-distance contextual information is especially important when dealing with target regions with a large
spatial span, and identifying different target categories in multi-class segmentation. Some networks used global
or pyramid pooling operations to obtain useful contextual information (Zhao etal 2017, Zhang et al 2018, Gu
etal 2019, Hu et al 2019). Atrous convolution, first proposed in Deeplabv3 (Chen et al 2017), was often adopted
to increase the receptive field of the network to obtain contextual information (Chen et al 2018, Yang et al 2018,
Mehta et al 2018a, Feng et al 2020). Some methods used non-local operations (Wang et al 2018), which allowed a
single element in any location to perceive information from all other locations (Fu etal 2019, Zhu et al 2019,
Mou et al 2021). However, these methods have their limitations. Pyramid pooling and atrous convolution can
only obtain contextual information around a certain pixel, and improve the local perception of the network.
Non-local models achieve a global receptive field, but at the expense of huge computational complexity and
memory cost. To cope with the above problem, regarding the fact that RS may accounts for alarge proportion of
the entire image in the three-class segmentation, we use the CFGF module (Yang et al 2021) to fuse global
information and obtain a global receptive field. For five-class segmentation, we propose a three-dimensional
contextual information perception module (TCIP) to obtain the long-range contextual information in the
channel, height, and width dimensions. Both modules expand the receptive field of the network while still have
acceptable complexity.

Many studies have shown that multi-task learning can improve the performance of the model through the
information sharing between different tasks (Mehta et al 2018b, Kawakami et al 2019, Xu et al 2020, Zhang et al
2021, Zhou etal 2021). For multi-class segmentation tasks, it is important for the segmentation network to
identify the categories that appear in the image, which can alleviate the problem of wrong target labeling in the
segmentation results. Therefore, for five-class segmentation, we propose to add a classification branch to the
network, whose features are fused into the segmentation network and help to improve the segmentation
performance. To further guide the model toward accurate identification of different target types, we also
propose a new category loss to constrain the segmentation results.

In summary, the main contributions of this work are listed as follows:

+ The CMC-Net, where the results from a three-class segmentation path (TSP) and a five-class segmentation
path (FSP) are fused by decision fusion layers, are proposed for fully automatic segmentation of RD, ORS,
MRS, and IRS in OCT images.
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Figure 2. Overview of the proposed framework.

C:9—64 C: 64—128—64 C: 64—5

Inputs ———* 2Xconv3 —* 2Xconv3 ——> conv3

Decision Fusion Layers

Figure 3. Structure of the decision fusion layers.

+ ATCIP is proposed to obtain the contextual information fusion of channel, height, and width dimensions and
increase the receptive field of the network.

+ A classification-assisted segmentation idea is proposed, where a classification branch can provide auxiliary
feature information to help the segmentation network.

+ A category loss function is proposed to train the segmentation network to learn discriminative features
between different types of targets, alleviating the problem of wrong label assignment in the segmentation
results.

2. Methods

2.1. The complementary multi-class segmentation framework

As shown in figure 2, the proposed CMC-Net is composed of the TSP, the FSP, and the decision fusion layers.
The TSP focuses on segmentation of RD and RS from the background, and the FSP is committed to
segmentation of RD, ORS, MRS, and IRS from the background. The TSP and FSP are designed differently to suit
their respective tasks. The difference is also necessary for the ensemble strategy to be effective.

As shown in figure 3, the decision fusion layers are composed of five 3 x 3 convolutional layers. They take a
nine-channel input, which is the concatenation of the predicted probability maps output by the TSP and the
FSP, and the original input image, and the output is five-channel corresponding to the probability maps for the
five class, including RD, ORS, MRS, IRS and the background. The intermediate channel numbers are 64 or 128,
as detailed in figure 3. Using convolution, for each location in the output, the result comes from a neighborhood
of the TSP and FSP predictions, and also takes consideration of information from the original image. Therefore,
the final segmentation fuses the two results by incorporating the spatial context.

2.2. The TSP framework

As shown in figure 4(a), the TSP network is a U-shaped structure (Ronneberger et al 2015), and adopts the
general structure of our previous work (Yang et al 2021). The lower part of the encoder is replaced by the four
stages of the middle part of Resnet18 (He et al 2016). The first two stages use a down-sampling operation with
convolution strides of 2, and the latter two stages use dilated convolution instead of the downsampling to reduce
the loss of detailed features. To make the network achieve global information, a CFGF module is added in the
bottom of the TSP. In addition to Yang et al (2021), A deep supervision (DS) module is applied in each layer of
the decoder, which will force the segmentation network to focus more on the target region and accelerate the

3
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Figure 4. Structure of the three-class segmentation path (a) overall structure, (b) cross-fusion global feature module.

convergence in training. In the DS module, the feature map from each decoder layer is upsampled to the original
image size after deconvolution and convolution operations. The result is compared with the ground truth and a
DSloss is calculated.

2.3. Cross-fusion global feature module (CFGF)
In one OCT image, there can be multiple RS regions and they can account for a large proportion of the entire
image. Besides, as the intensities of RS and RD are similar, global context such as the overall retinal structure is
needed to distinguish them. Based on the above considerations, we adopted the CFGF module in the TSP.

As shown in figure 4(b), for a three-dimensional input tensor X € REXHXW ‘where Cis the channel
number, His the height, and Wis the width, the cross-fusion operation for obtaining tensor Y € RE*#*W can
be written as:

m=1 n=1

w H
Vi = Sigmoid(z amxzimz bnxznj)xzij + Xzij> (1)

where x,;; and ¥ are elements in X and Y with channel index z, row index i and column index j, and a,, and b,
are the learned fusion weights in the horizontal and vertical dimensions, respectively. Finally, after two such
operations consecutively, each element in the output of CFGF will contain information from all locations in the
corresponding input feature map. Therefore, embedded with the CFGF module, the TSP network obtains a
global receptive field. Refer to Yang et al (2021) for more details of the module.

2.4. The FSP framework

As the task of FSP involves more categories, there come more uncertainties. Some categories may not occur ina
certain image, and the difference among the three subcategories of RS is even smaller than that between RD and
RS. These factors will cause wrong label assignments to segmented regions, resulting in error even when the
region boundary is correctly delineated. To cope with the problem, we propose to use a classification-guided
segmentation network in FSP, where features obtained by the classification task are fused with those of the
segmentation network, and the classification loss and a new category loss are also employed in network
optimization.

As shown in figure 5(a), the encoders of the classification network and the segmentation network both adopt
four stages of pretrained Resnet18 (He et al 2016). A TCIP module is added to the bottom of the segmentation
network to obtain the long-range contextual information in the channel, height, and width dimensions. The
decoder of the segmentation network is composed of some feature merge decoder (FMD) modules (figure 5(b)),

4
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Figure 5. Structure of the five-class segmentation path (a) overall structure, (b) feature merge decoder module, (c) three-dimensional
contextual information perception module.

which merge the high-level features with the low-level features extracted from both the classification and
segmentation network encoders. The FMD module uses 1x 1 convolution to process the semantic features of the
classification network, hoping to extract information that is conducive to segmentation and add it to the
segmentation features, while suppressing information that hinders the segmentation task.

2.5. Three-dimensional contextual information perception module (TCIP)
The RD, ORS, MRS, and IRS in the OCT image have large distribution span and big variation in size. In order to
cope with such difficulties in segmentation, we propose the TCIP module to fuse the contextual information in
channel, height, and wc receptive field of the network.

As shown in figure 5(c), the input tensor X € RE*H*W is first fed into three parallel pathways, where it is
squeezed in one dimension using a group of learnable weights gWidth ¢ Rlx1xW gHeight ¢ RIXHx1 op
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Channel € RCx1X1 This gives AWidth € RCxHXx 1’ AHeight € RCx1x W’ and AChannel € RIXHxW respectively.
Then, after the Sigmoid function, these squeezed features of different dimensions are multiplied with the
original feature maps. Three learnable parameters constrained by the Softmax function are used to weight the
feature maps from the three branches. Finally, the output feature map Y € R©**Wis obtained by adding all the
feature maps from the three branches and the original feature map. Therefore, an element ¥ in the feature map
Yis calculated from X as follows:

w
. . Width
Vi =« SlngId( > a, xzim)-xzij
m=1

H
+ 4 Sigmoid(z afe‘ghtxznj)xzij

n=1
€\ Channel
: : Channe!
+ 7 Sigmoid| > " a/ Xiij |Xzij + Xz )
=1
where g, Width g Height apnd g Channel e elements from aWVidth, gHeight and gChannel regpectively,

andy=1-—a — (.

Through the above process, each element in the output feature map contains information from elements in
the same row, the same column, and at the same spatial location of all channels. Feature recalibration is achieved
based on long-range context information from all dimensions.

2.6. Loss functions

To alleviate the problem of unbalanced pixel categories, we choose the Dice loss (Milletari ef al 2016) as the main
loss function of the segmentation network. Here we treat multi-class segmentation as multiple binary
segmentation tasks, and define the Dice loss based on the average Dice score over all categories:

S
1 Y 25 by
lossDice =1 — _E Zlflpn)l)/ﬂ,l

S 2 N 2’
N Zi:]pn,i + zi:lyn,i

where N represents the number of categories, S represents the number of pixels, p, ; € [0, 1] represents the
predicted probability of the nth category for the ith pixel,and y, ; € {0, 1} represents the ground truth label
indicating whether the ith pixel belongs to the nth category.

For TSP, the total loss function is the weighted sum of the Dice loss of the final prediction and the four DS
modules.

3

4
IOSSTSP = IOSSDice + Alz loss]kDice’ (4)
k=1

where N = 3 when calculating Dice loss.

The classification network in the FSP uses the binary cross-entropy (BCE) loss function (Ridnik et al 2021).
Again, multi-class classification is treated as multiple binary classification tasks, and the BCE loss is defined as
the average over all categories:

N
losspc = %Z ~ t,log(B) — (1 — t)log(l — B, )

n=1

where N represents the number of categories, B, € [0, 1] represents the predicted classification probability for

the nth category output by the classification branch, and ¢, € {0, 1} represents the nth category label for each

image. f, is generated from the segmentation ground truth map, i.e. f, = max{y, ;} indicating whether any nth
1

category pixel appears in the ground truth map.
Therefore, for FSP, the joint loss function of classification and segmentation is:

losso ine = losspice + losspce, (6)

where N = 5 when calculating the Dice and BCE loss.

The BCE loss mainly constrains the classification branch and assists the segmentation indirectly. To offer a
more direct constraint of category information in the segmentation results, we further propose a novel category
loss function, which helps to improve the ability of the segmentation network to correctly identify existing
categories in images. As shown in (7), we find the largest probability value from each of the five output
probability maps to represent the predicted probability of the category in the image, and then calculate the BCE
loss.




I0OP Publishing Phys. Med. Biol. 68 (2023) 115019 F Shietal

N
1Osscategory = ;]_Z — 1ty log (SlngId(maX (pn,i)))

n=1

-1 - tn)log(l — Sigmoid(max (pn)i))). @)

Finally, the loss function of the FSP is calculated as:

losspsp = 10ssjoine + A2108Scategory- €))

In training of the decision fusion layers which give the final segmentation results, the Dice loss is used.

3. Experiment settings

3.1. Datasets and evaluation metrics

The dataset used in this paper are two-dimensional OCT images acquired by Topcon Atlantis DRI-1 swept
source OCT scanner (Topcon Corp., Tokyo, Japan) at the First People’s Hospital Affiliated to Shanghai Jiao
Tong University. The collection and analysis of image data were approved by the Institutional Review Board of
the First People’s Hospital Affiliated to Shanghai Jiao Tong University, and adhered to the tenets of the
Declaration of Helsinki. An informed consent was obtained from each subject. The macula-centered 12-line
radial scanning mode was used. The original image size was 1024 x 992 corresponding to 9 mm x 2.6 mm
(width x height). The experimental dataset comprised of a total of 1596 OCT B-scans from 133 eyes with high
myopia, with 12 OCT B-scans per eye. The ground truth is obtained by manual delineation under the
supervision of a senior physician. A total of 972 images from 81 eyes were used as the training set, the validation
setincluded 312 images from 26 eyes, and the test set included the rest 312 images from 26 eyes. The three sets
are randomly divided on patient level.

To evaluate the segmentation results, four evaluation indicators are used: Dice coefficient, intersection over
union (IoU), sensitivity (Sen), and specificity (Spe). These evaluation indicators are calculated for each type of
lesion separately, as in a binary segmentation task, and the average over all types of lesions are also calculated in
comparison with other existing methods.

3.2. Implementation details

The experiments were performed on the public platform PyTorch and on a GeForce RTX 3090 GPU with 24GB
memory. The three parts of the proposed framework, TSP, FSP, and decision fusion layers were trained
separately using the same training settings. The TSP and FSP were trained for 100 epochs, respectively, and the
decision fusion layers were trained for 50 epochs. The batch size was 4. Considering the memory cost and
training time cost, we resized the images to 256 x 512 before input. The stochastic gradient descent (SGD)
algorithm was applied to optimize the network, and the ‘poly’ learning rate policy was used (Mishra and
Sarawadekar 2019). The weights in the loss functions were determined according to performance on the
validation set. The best values chosen were \; = 0.7 and \, =0.1.

4, Results

4.1. Ablation experiments

Table 1 shows the results of ablation experiments for TSP, where ‘Baseline’ refers to the U-shaped structure
shown in figure 4(a) without CFGF and DS. Compared to the Baseline, adding the CFGF module at the bottom
of the segmentation network results in an improvement of 1.13%, 1.30%, and 1.18% in average Dice, IoU and
Sen, respectively. Adding DS to the decoder further improves the average Dice, IoU and Sen by 1.24%, 1.35%
and 0.86%, respectively. The Dice, [oU and Sen of each category are also improved in most cases, while Spe is
kept high. These results validate the usefulness of the global context and the deep supervision strategy.

Table 2 shows the results of ablation experiments for FSP, where ‘Baseline’ refers to the U-shaped
segmentation network without TCIP, whose encoder is the same as shown in figure 5(a), and the decoder is
composed of a U-Net (Ronneberger et al 2015) decoder, but each layer has only one 3 x 3 convolution. The
baseline was trained with Dice loss only. As shown in table 2, adding the classification network or adding the
TCIP module can both improve the segmentation performance. Compared to the baseline, adding both leads to
an improvement of 3.48%, 3.68%, and 2.31% in average Dice, IoU and Sen, respectively. By adding the proposed
category loss to the total loss function, a further improvement of 1.36%,1.45% in Dice and IoU is achieved. The
Dice, IoU and Sen of each category are also improved in most cases, while Spe is kept high.
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Table 1. Results of ablation experiment of TSP.

Methods Dice (%) IoU (%) Sen (%) Spe (%)
Baseline RS 88.84 80.85 88.23 99.61
RD 87.90 85.99 97.55 99.60
Average 88.37 83.42 92.89 99.61
Baseline + CFGF RS 89.83 82.18 90.91 99.52
RD 89.17 87.26 97.22 99.79
Average 89.50 84.72 94.07 99.66
Baseline + CFGF + DS RS 90.23 82.68 92.37 99.44
RD 91.25 89.46 97.48 99.84
Average 90.74 86.07 94.93 99.64

Table 2. Results of ablation experiment of FSP.

Methods Dice (%) IoU (%) Sen (%) Spe (%)
Baseline ORS 89.36 81.58 92.03 99.59
MRS 73.92 66.46 78.39 99.93
IRS 71.40 66.24 76.76 99.94
RD 80.25 77.88 96.54 99.70
Average 78.73 73.04 85.93 99.79
Baseline + classification network ORS 89.67 81.94 92.53 99.54
MRS 76.24 69.11 77.22 99.95
IRS 73.77 68.49 81.22 99.94
RD 86.42 84.52 98.12 99.76
Average 81.52 76.02 87.27 99.80
Baseline + TCIP ORS 89.83 82.19 93.27 99.54
MRS 74.96 67.79 76.36 99.94
IRS 73.28 67.73 78.87 99.95
RD 82.99 80.77 96.77 99.78
Average 80.26 74.62 86.32 99.80
Baseline + TCIP + classification network ORS 90.15 82.73 92.13 99.58
MRS 76.73 69.47 82.53 99.92
IRS 76.32 71.06 80.34 99.95
RD 85.63 83.63 97.96 99.79
Average 82.21 76.72 88.24 99.81
Baseline 4+ TCIP + classification network + category loss ORS 90.35 82.99 93.35 99.54
MRS 77.49 70.54 81.19 99.93
IRS 76.49 71.34 81.96 99.93
RD 89.94 87.81 96.56 99.86
Average 83.57 78.17 88.27 99.82

Table 3 shows the results of ablation experiments for the decision fusion layers, where ‘3 conv’ means using a
structure with the middle two convolution layers removed, and ‘7 conv’ means duplicating the middle two
convolution layers. Results without inputting the original image to the fusion are also compared. It can be seen
that the proposed structure and input obtain the highest average Dice, IoU, Sen and Spe.

In table 4, the results of TSP, FSP, and the whole framework, CMC-Net, are compared. For FSP and CMC-
Net, to show the segmentation of total RS, we merge the output regions of ORS, MRS, and IRS as one category.
Student’s paired t-test between the Dice scores of TSP and CMC-Net, as well as between FSP and CMC-Net is
performed, and statistical significance with p < 0.05 are indicated. It can be seen that, regarding RS and RD
segmentation, the performance of FSP is inferior to TSP, because the complexity of the task increases when the
network is trained to distinguish more types of targets. According to the mean Dice values and results of
statistical tests, by fusing the results of the TSP and FSP, the CMC-Net achieves comparable RS segmentation
performance compared to TSP, and statistically better RD segmentation performance compared to both TSP
and FSP. CMC-Net obtains statistically better performance over FSP in the total RS segmentation, and in
segmentation of ORS and MRS. The performance on IRS segmentation is comparable. These results
demonstrate that the CMC-Net combines results of the two paths in a complementary manner and thus gets an
overall superior performance.
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Table 3. Results of ablation experiment of decision fusion layers.

Methods Dice(%) IoU(%) Sen(%) Spe(%)
3 conv ORS 90.51 83.37 93.57 99.51
MRS 77.89 71.01 79.87 99.94
IRS 76.05 70.77 78.73 99.97
RD 92.47 90.69 97.34 99.85
Average 84.23 78.96 87.38 99.82
7 conv ORS 90.02 82.59 94.58 99.42
MRS 78.44 71.52 79.36 99.95
IRS 76.43 71.15 79.56 99.96
RD 92.55 90.76 97.77 99.84
Average 84.36 79.01 87.82 99.79
w/o original image ORS 90.05 83.29 94.01 99.48
MRS 78.42 71.55 80.39 99.94
IRS 76.56 71.27 79.14 99.97
RD 92.45 90.69 97.40 99.85
Average 84.37 79.20 87.74 99.81
CMC-Net(5 convwith originalimage) ORS 91.01 84.08 93.66 99.54
(5 conv with original image) MRS 78.91 72.05 81.46 99.93
IRS 76.86 71.67 80.91 99.94
RD 92.54 90.76 97.54 99.84
Average 84.83 79.64 88.39 99.82
Table 4. Results of ablation experiment of CMC-Net.
Methods Dice (%) IoU (%) Sen (%) Spe (%)
TSP RS 90.23 82.68 92.37 99.44
RD 91.25" 89.46 97.48 99.84
FSP RS* 89.56" 81.63 91.35 99.47
ORS 90.35" 82.99 93.35 99.54
MRS 77.49" 70.54 81.19 99.93
IRS 76.49 71.34 81.96 99.93
RD 89.94" 87.81 96.56 99.86
CMC-Net RS* 90.23 82.71 91.83 99.48
ORS 91.01 84.08 93.66 99.54
MRS 78.91 72.05 81.46 99.93
IRS 76.86 71.67 80.91 99.94
RD 92.54 90.76 97.54 99.84

* indicates statistically significant difference with p < 0.05, compared with

CMC-Net.

* Calculated by treating the output ORS, MRS, and IRS regions as one category.

4.2. Comparisons with state-of-the-art

In this section, first we compare the segmentation results of our proposed TSP with some state-of-the-art

F Shietal

networks on RD and RS segmentation. Then, we compare the segmentation results of the proposed FSP and

CMC-Net with some state-of-the-art networks on RD, ORS, MRS, and IRS segmentation.

The proposed TSP are compared with methods including: PSPNet (Zhao et al 2017), DeeplabV3 (Chen et al
2017), R2U-Net (Alom et al 2018), Attention U-Net (Oktay et al 2018), UNet++ (Zhou et al 2020), CE-Net (Gu
etal2019), CPFNet (Feng et al 2020) and HRNet (Wang et al 2021). As shown in table 5, the proposed TSP

obtains the best segmentation results, and the Dice coefficient of RS and RD reach 90.23% and 91.25%,

respectively, and the average Dice coefficient reaches 90.74%.
For the FSP, the multi-task network Y-Net (Mehta et al 2018b) is also included for comparison. As shown in
table 6, compared with these state-of-the-art networks, the proposed FSP achieves the best results, and the Dice
coefficients of ORS, MRS, IRS, and RD reach 90.35%, 77.49%, 76.49%, and 89.94% respectively, and the average
Dice coefficient reaches 83.57%. Finally, CMC-Net further improved the segmentation results of ORS, MRS,
IRS, and RD with Dice coefficients 0of 91.01%, 78.91%, 76.86%, and 92.54% respectively, and the final average

Dice coefficient reaches 84.83%.

The average test time for TSP, FSP and CMC-Net is also shown in tables 5 and 6 and compared with other
existing methods. The average test time is 5.77 ms and 6.25 ms for TSP and FSP, respectively. With the added
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Table 5. Comparisons of TSP with state-of-the-art networks.

Methods Dice (%) IoU (%) Sen (%) Spe (%) Test time (ms)
PSPNet (Zhao et al 2017) RS 83.24 72.31 84.75 99.25 5.29
RD 83.59 80.99 96.08 99.69
Average 83.42 76.65 90.41 99.47
DeeplabV3 (Chen etal 2017) RS 74.00 60.10 73.75 99.06 3.53
RD 78.64 75.01 93.90 99.52
Average 76.32 67.55 83.83 99.29
R2U-Net (Alom et al2018) RS 64.03 51.38 67.80 99.11 9.94
RD 66.81 62.88 91.44 98.74
Average 65.42 57.13 79.62 98.93
Attention U-Net (Oktay etal 2018) RS 89.69 82.00 90.76 99.55 5.93
RD 86.23 84.37 98.27 99.61
Average 87.96 83.19 94.52 99.58
UNet++ (Zhou et al 2020) RS 89.50 81.73 90.70 99.51 5.13
RD 86.40 84.25 97.03 99.64
Average 87.95 82.99 93.86 99.57
CE-Net (Gueral2019) RS 86.44 76.80 89.31 99.31 7.37
RD 88.36 85.57 93.66 99.87
Average 87.40 81.18 91.48 99.59
CPFNet (Feng et al 2020) RS 86.93 77.61 86.54 99.50 3.85
RD 82.85 80.59 95.56 99.73
Average 84.89 79.10 91.05 99.62
HRNet (Wang et al 2021) RS 85.68 75.68 87.09 99.34 4.81
RD 84.42 81.86 95.97 99.68
Average 85.05 78.77 91.53 99.51
TSP RS 90.23 82.68 92.37 99.44 5.77
RD 91.25 89.46 97.48 99.84
Average 90.74 86.07 94.93 99.64

modules and the classification branch, TSP and ESP still have decent processing efficiency. The CMC-Net
requires 16.35 ms when TSP, FSP and the decision layers are run sequentially. This time can be further reduced if
TSP and FSP are run in parallel. Still, this test time can fulfill the real time requirement of clinical applications.

Figure 6 shows the segmentation results of ORS, MRS, IRS, and RD qualitatively. Compared with other
state-of-the-art segmentation networks, the proposed FSP cannot only delineate the pathological regions more
accurately, but also assign labels more correctly. For example, for the B-scan in the second column, the proposed
FSP correctly determined that there are only two target categories presented. It can be seen from the firstand
third column that the proposed FSP has good segmentation results for both small and large targets. Figure 6(m)
also gives the segmentation results of the TSP for RD and RS, and it can be seen that good segmentation results
are achieved for both small and large RS. As shown in figure 6(n), in the fused results of CMC-Net, the results of
TSP can make up for some detailed information lost in the results of FSP, making the segmentation areas more
complete and accurate.

To further illustrate the results of multi-class segmentation, figure 7 shows some confusion matrices, which
are computed on all pixels in the test set (different than the indices in table 6 which are averages on image-level),
and are normalized row-wise. The row summary on the right of each matrix shows the total number of correctly
and mistakenly labeled pixels. It can be seen that the total number of background pixels are the largest, which
correpond to the surrounding retina tissues and non-retinal area, and the total number of RD and ORS pixels are
larger than MRS and IRS. The confusion matrices from different methods share similar features. The
segmentation of bigger lesions is better than smaller ones. For each lesion, major mistake occurs when they are
confused as background. This is caused by the low contrast and blurred boundary of lesion regions, which is
more profound for MRS and IRS. Mistakes also occur between lesions that are often adjacent in location, such as
between RD and ORS, or between ORS and MRS. Compared with UNet-++ and HRNet, the proposed FSP and
CMC-Net can better distinguish different type of lesions, and the CMC-Net has the highest accuracy.

5. Discussion and conclusions

Accurate segmentation of RD, ORS, MRS, and IRS in OCT images has great clinical value for diagnosis and
treatment of myopic maculopathy. The main challenges for segmentation of RD, ORS, MRS, and IRSin OCT
images are unbalanced categories, large variations in size and span of the targets, and the similarity of shape and
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Table 6. Comparisons of FSP and CMC-Net with state-of-the-art networks.

Methods Dice (%) IoU (%) Sen (%) Spe (%) Tst time (ms)
PSPNet (Zhao et al 2017) ORS 81.27 70.11 83.40 99.37 6.09
MRS 67.41 59.30 67.02 99.95
IRS 63.07 58.22 68.32 99.90
RD 84.10 81.13 93.77 99.72
Average 73.96 67.19 78.13 99.74
DeeplabV3 (Chen etal 2017) ORS 73.95 60.67 81.76 98.96 4.83
MRS 59.04 52.08 57.83 99.95
IRS 57.75 54.05 61.64 99.89
RD 77.14 73.41 93.37 99.49
Average 66.97 60.05 73.65 99.57
R2U-Net (Alom etal 2018) ORS 72.48 60.78 66.74 99.71 10.09
MRS 63.80 57.87 64.33 99.96
IRS 65.67 61.19 67.15 99.98
RD 76.60 73.13 82.25 99.62
Average 69.64 63.24 70.12 99.82
Attention U-Net (Oktay et al 2018) ORS 90.17 83.01 91.33 99.62 6.41
MRS 70.63 63.49 75.35 99.94
IRS 74.10 68.47 85.63 99.94
RD 83.19 81.33 98.21 99.54
Average 79.52 74.08 87.63 99.76
UNet++ (Zhou et al 2020) ORS 89.71 82.42 90.05 99.61 5.90
MRS 73.47 66.66 75.82 99.95
IRS 74.74 69.16 80.74 99.95
RD 83.13 80.82 96.62 99.53
Average 80.26 74.76 85.81 99.76
CE-Net (Guetal2019) ORS 86.21 76.80 89.02 99.47 8.01
MRS 64.96 56.97 73.45 99.95
IRS 59.43 52.65 82.34 99.88
RD 81.28 78.48 94.01 99.71
Average 72.97 66.23 84.70 99.75
Y-Net (Mehta et al 2018b) ORS 88.67 80.66 90.15 99.59 4.79
MRS 72.77 65.37 73.90 99.96
IRS 72.46 67.02 76.18 99.94
RD 85.19 83.07 96.98 99.68
Average 79.77 74.03 84.30 99.79
CPFNet (Fenget al 2020) ORS 87.01 77.88 87.82 99.54 5.03
MRS 64.61 56.99 62.68 99.98
IRS 59.88 53.97 73.62 99.95
RD 84.82 82.02 93.72 99.77
Average 74.08 67.72 79.46 99.81
HRNet (Wanget al 2021) ORS 89.83 82.19 93.27 99.54 5.99
MRS 74.96 67.79 76.36 99.94
IRS 73.28 67.73 78.87 99.95
RD 82.99 80.77 96.77 99.78
Average 80.27 82.19 93.27 99.54
FSP ORS 90.35 82.99 93.35 99.54 6.25
MRS 77.49 70.54 81.19 99.93
IRS 76.49 71.34 81.96 99.93
RD 89.94 87.81 96.56 99.86
Average 83.57 78.17 88.27 99.82
CMC-Net ORS 91.01 84.08 93.66 99.54 16.35
MRS 78.91 72.05 81.46 99.93
IRS 76.86 71.67 80.91 99.94
RD 92.54 90.76 97.54 99.84
Average 84.83 79.64 88.39 99.82

intensity among different types of targets, which will lead to category error in segmentation. In this paper, we
propose the novel CMC-Net for automatic segmentation of RD, ORS, MRS, and IRS in OCT images. The CMC-
Net consists of three independently trained sub-networks, namely TSP, FSP and decision fusion layers.
Although our ultimate goal is to segment the four types of lesions, considering RD/RS segmentation is a simpler
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Figure 6. Visualization of segmentation results. (a) the original image (b) ground truth (c) PSPNet (d) DeeplabV3 (e) R2U-Net (f)
Attention U-Net (g) UNet-++ (h) CE-Net (i) Y-Net (j) CPFNet (k) HRNet (1) the proposed FSP (m) the proposed TSP (n) the proposed
CMC-Net. (RD is represented in green, RS is represented in yellow, ORS is represented in red, MRS is represented in blue, and IRS is
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Figure 7. Pixel-level confusion matrices calculated on the entire test set. The values in the matrices are normalized row-wise. The row
summary on the right of each matrix shows the total number of correctly or mistakenly labeled pixels. (a) UNet++ (b) HRNet (c) FSP
(d) CMC-Net.

task, we design both the three-class and FSPs so that by combination, the RD/RS segmentation results act to
improve the final segmentation of RD, ORS, MRS, and IRS.

For the TSP, the network adopts a U-shaped structure, where ResNet blocks and dilated convolutions are
integrated for better feature extraction. As sometimes RS occupies a large portion of the entire image, a CFGF
module is placed at the bottom of the segmentation network to fuse the global features and make the network
obtain global receptive field. In order to make the deep layers of the network pay more attention to the
segmentation targets, deep supervision modules are further added to each layer of the decoder. Ablation
experiments show that both the CFGF and DS modules contribute to the final segmentation performance.
Comparative experiments show that the TSP outperforms some state-of-the-art networks in segmenting RD
and RS.

For the FSP, the framework adopts a W-shaped structure, consisting of a classification encoder, a
segmentation encoder and a decoder. Though each subcategory of RS is smaller in area than the total RS, some of
them still have a large spatial span. Therefore, a novel TCIP module is added after the segmentation encoder,
which can obtain the long-range contextual information and results in a long cross-shaped receptive field.
Facing the challenges of discerning different types of targets, two strategies are proposed in FSP. First, following
the idea of multi-task learning, the classification encoder, trained with the classification loss, produces
supplementary features that are merged with those from the segmentation encoder. Secondly, the proposed
category loss function can constrain the segmentation network to learn more distinguishing features. Ablation
experiments show that the TCIP module, the classification branch, and the category loss all contribute to the
final segmentation performance. Comparative experiments show that the FSP outperforms some state-of-the-
art networks in segmenting RD, ORS, MRS, and IRS. Specifically, figure 6 shows that FSP can label the target
regions more correctly while accurately segmenting them.

According to the design and the experimental results of TSP and FSP, the two models fulfill the requirements
of the ensemble strategy, which have both ‘accuracy’ and ‘diversity’. This ensures the final outcomes of the
proposed CMC-Net to be a complementary combination and to achieve further improvement in performance.
As the two paths give different number of labels, it is difficult to fuse the decisions by simple voting or weighting.
Therefore some convolutional layers are designed for decision fusion. Note that the original image is also used in
the fusion stage to provide more comprehensive information. As shown in table 3 and figure 6, the performance
of RD/RS segmentation of TSP is better than that of FSP. The segmented region is more complete and the
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boundaries are smoother. The main reasons are the simplicity of the task and the bigger receptive field. Then,
after fusion, the final results of CMC-Net obtain improvement over both TSP and FSP, and the ultimate goal of
segmenting RD and the three subcategories of RS is achieved.

Both TSP and FSP achieves big receptive field with acceptable model complexity. The number of parameters
for TSP is 20.15 M, while the number of parameters for FSP is 15.76 M. The smaller size of FSP is associated with
the smaller receptive field, but is more suitable for the five-class segmentation task, because the samples for each
category become less. The total number of parameters for the proposed CMC-Net is 36.09 M, which is
comparable to many state-of-the-art segmentation networks, such as PSPNet (48.79 M), R2U-Net (39.09 M),
Attention U-Net (34.88 M), CE-Net (29.00 M), CPFNet (43.26 M), and HRNet (29.53 M).

The proposed work is an early attempt in automatic quantitative analysis of RD and RS. The CMC-Net
achieves values over 90% for all performance indices in RD and ORS segmentation, and therefore is good for
detection, localization, and tracking their changes which are needed in clinical diagnosis of pathological myopia.
The Dice and IoU for MRS and IRS are lower. This may be due to their blurry boundaries, low contrast and small
size. Still, the pixel-level sensitivity is over 80% and specificity is high. This indicates that the method can be used
in automatic detection and localization of these early signs of pathological myopia and help clinical grading of
the pathology.

In the future, to overcome the problem of incorrect segmentation of adjacent lesions caused by blurry
boundaries and further improve the segmentation of MRS and IRS, prior knowledge such as constraints of the
retinal layers can be integrated into model design. Other aspects for improvement include the following. The
current framework requires separate training procedures for the three parts, which is inefficient. We will try
feature fusion strategies which combine information from different segmentation tasks in an earlier stage, and
make the segmentation end-to-end. In addition, we will extend the CMC-Net for other multi-class medical
image segmentation tasks.
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